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Received 16 July 1999, in final form 16 February 2000

Abstract. It is proved that the divergent Rayleigh–Schrödinger perturbation expansions for the
eigenvalues of any odd anharmonic oscillator are Borel summable in the distributional sense to the
resonances naturally associated with the system.

1. Introduction and statement of the results

Recent work on complex operators with a real spectrum (see, e.g., [3–5, 12–14, 22] and
references therein) in quantum mechanics and on the so-called Bessis–Zinn Justin conjecture
have generated renewed interest in the spectral and perturbation theory of odd anharmonic
oscillators in quantum mechanics, namely the class of Schrödinger operators in L2(R) defined
(on a domain to be specified later) by the action of the differential operator

H(β) = p2 + x2 + βx2k+1 ≡ H(0) + βx2k+1 k = 1, 2, . . . . (1.1)

Here p = −id/dx, β, the coupling constant, is a numerical parameter and k is fixed. The
spectral and perturbation theory of the operators H(β) (the first perturbation theory examples
that were introduced in quantum mechanics, see, e.g., [6]) was settled long ago, from a
mathematically rigorous standpoint, for non-real values of the coupling constant ([7]; see
also [1, 2, 15]). The main results (see the summary for more details) are: if β ∈ C, Im β > 0
(analogous results for Im β < 0) H(β) has a discrete spectrum, and for any j = 0, 1, . . . ,
there is exactly one eigenvalue Ej(β) near the eigenvalue 2j + 1 of H(0) for |β| suitably
small. The Rayleigh–Schrödinger perturbation expansion near 2j + 1 exists to all orders, is
even and is Borel (more precisely, Borel–Leroy of order q ≡ (2k−1)/2)) summable toEj(β)
for π/8 + η < argβ < 7π/8 − η, η > 0 (see [4] for tests of numerical accuracy). Hence if β
is purely imaginary and small the eigenvalues Ej(β) are real.

These results, however, leave completely open the problem of the meaning of the
perturbation series for β ∈ R. In this caseH(β) does not define a unique self-adjoint operator;
nevertheless the function Ej(β) can be analytically continued to β ∈ R where it can still be
interpreted as a resonance of the problem, as recalled in the summary. Its real part (which admits
the perturbation series as an asymptotic expansion) represents the location of the resonance
and its imaginary part represents the width. However, when β ∈ R the coefficients of this
power series have constant sign; as is well known, this prevents Borel summability because
the Borel transform develops a pole on the positive real axis.

The notion of distributional Borel summability (more precisely, in this case, Borel–Leroy
of order q) was introduced in [8] exactly to deal with this kind of situations and its validity

0305-4470/00/203753+18$30.00 © 2000 IOP Publishing Ltd 3753



3754 E Caliceti

was proved in [10, 9] for the eigenvalues of the double-well oscillator and for the Stark effect
resonances, respectively. It is recalled in the following:

Definition 1.1. Let q be a rational number, (as)s∈N a sequence of real numbers andR > 0. We
say that the formal series

∑∞
s=0 asβ

s is Borel–Leroy summable of order q in the distributional
sense to f (β) for 0 < β < R if the following conditions are satisfied.

(a) Set

B(t) ≡
∞∑
s=0

as

�(qs + 1)
t s . (1.2)

Then B(t) is holomorphic in some circle |t | < �; moreover B(t) admits a holomorphic
continuation to the intersection of some neighbourhood of R+ ≡ {t ∈ R : t > 0} with
C

+ ≡ {t ∈ C : Im t > 0}.
(b) The boundary value distribution B(t + i0) exists ∀t ∈ R+ and the following representation

holds:

f (β) = 1

qβ

∫ ∞

0
PP(B(t)) e−(t/β)1/q

(
t

β

)−1+1/q

dt (1.3)

for β belonging to the Nevanlinna disc of the β1/q-plane CR ≡ {β : Re β−1/q > R−1},
where PP(B(t)) = 1

2 (B(t + i0) + B(t + i0)).

If q = 1 the series is called Borel summable in the distributional sense to f (β).

Remark 1.2.

(a) As for the ordinary Borel sum, the representation (1.3) is unique among all real functions
admitting the prescribed formal power-series expansion and fulfilling suitable analyticity
requirements and remainder estimates (the Nevanlinna conditions: see the appendix for
their definition in the distributional case).

(b) In the definition of the Nevanlinna disc the principal determination is taken whenever an
ambiguity is generated by the power β−1/q .

In the case of the Stark effect the distributional Borel summability puts into one-to-one
correspondence the perturbation series near the hydrogen bound states with the real part
(location) of the resonances. Here the analogous result is proved for the odd anharmonic
oscillators, namely,

Theorem 1.3. Let q = (2k−1)/2, j ∈ N, β ∈ R and fj (β) ≡ ReEj(β), gj (β) ≡ ImEj(β).
Then

(a) The Rayleigh–Schrödinger perturbation expansion near 2j + 1 is Borel–Leroy summable
of order q in the distributional sense to fj (β) for |β| suitably small; in particular,

fj (β) = 1

q|β|
∫ ∞

0
PP(Bj (t)) e−(t/|β|)1/q

(
t

|β|
)−1+1/q

dt (1.4)

where Bj(t) is defined as in (1.2).
(b) fj (β) = fj (−β), gj (β) = −gj (−β).
Remark 1.4.

(a) The symmetry property fj (β) = fj (−β) is a consequence of the property a2l+1 = 0, ∀l,
which in turn follows from the odd symmetry of the perturbation x2k+1.
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(b) The distributional Borel summability in the direction argβ = π is reduced to definition 1.1
in theorem 3.13 below. In particular (remark 3.12),Ej(β) turns out to be analytic also in the
disc CR′ = {

β : Re (β ′)−1/q > (R′)−1, β ′ = βe−iπ
}
, so that the following representation

holds:

dj (β) ≡ 2igj (β) =

Ej(β)− Ej(β) β ∈ CR
Ej(β)− Ej(β) β ∈ CR′ .

(1.5)

Here dj (β) is the ‘discontinuity’, which has zero asymptotic expansion (see the appendix).
(c) The distributional Borel summability procedure actually also determines the imaginary

part of the functions Ej(β), β ∈ R, i.e. also the width of the resonances. The discussion
of this aspect is postponed after the proof of theorem 1.3.

(d) The analyticity domain specified in theorem 2.1 below allows a direct application of the
Harrell–Simon argument [17] relating the imaginary part of the resonance, divergence of
the perturbation expansion and WKB barrier penetration formula. One has, for the ground
state (i.e. j = 0)

ImEj(β) ∼ e−A/β1/q
A ≡

∫ 1

0
u
√

1 − u2q du. (1.6)

This is a straightforward computation, completely analogous to those of [16, 17] for the
quartic anharmonic oscillators, the double-well and the Stark effect. The details are
omitted.

The proof of theorem 1.3 requires the verification of the analogue of the Nevanlinna criterion,
stated and proved in theorem 4 of [8], and recalled here in the appendix for the convenience
of the reader. The proof of the criterion is accomplished in two steps. In the first one (details
in section 2) it is proved that the eigenvalues Ej(β), Im β > 0, admit a (many-valued)
analytic continuation to a (Riemann surface) sector wider than that obtained in [7], namely
−(2k − 1)π/4 < argβ < (2k + 3)π/4. To do this we apply to this situation the Hunziker–
Vock technique [18], developed after [7], to establish eigenvalue stability. The second one
(section 3) consists in extending this analyticity to a suitable Nevanlinna disc, as required
by the criterion for distributional Borel summability. We do this by adapting to the present
situation the techniques introduced in [10, 9] to deal with the double-well oscillators and the
Stark effect. Finally, the interpretation of the present and previous mathematical results in
terms of quantum mechanical resonances is described in the summary.

2. Analytic continuation of the complex eigenvalues

Let k ∈ N be fixed and β ∈ C − {0}; H(β) will denote the operator in L2(R) defined by
D(H(β)) = D(p2) ∩D(x2k+1) and

H(β)u = (p2 + x2 + βx2k+1)u ∀u ∈ D(H(β)). (2.1)

In [7] it was proved that, for Im β > 0, H(β) represents a holomorphic family of type A of
operators with compact resolvents and, for |β| suitably small, a non-empty (discrete) spectrum.
The norm resolvent convergence of H(β) to the harmonic oscillator

H(0) = p2 + x2 D(H(0)) = D(p2) ∩D(x2) (2.2)

as |β| → 0, Im β > 0, yielded the stability of the eigenvalues ofH(0)with respect to the family
H(β) in the following sense: for any fixed j ∈ N and ∀δ > 0, there exists Bj(δ) ≡ B(δ) > 0
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such that for |β| < B(δ), Im β > 0, H(β) has exactly one eigenvalue Ej(β) such that
|Ej(β) − (2j + 1)| < δ, and therefore Ej(β) → (2j + 1) as |β| → 0, Im β > 0. Moreover,
such eigenvalues are analytic functions of β, for |β| < B(δ), Im β > 0, and they admit a
(many-valued) analytic continuation across the real axis to the (Riemann surface) sector

S1(δ) = {
β : |β| < B(δ),−(2k − 1) 1

8π + δ < argβ < (2k + 7) 1
8π − δ

}
. (2.3)

Finally, there exist constants C, η > 0 such that the corresponding Rayleigh–Schrödinger
perturbation expansion is Borel summable to Ej(β) in the sector |β| < C, π/8 + η < argβ <
7π/8−η. The main result in this section consists in extending the analyticity of the eigenvalues
of H(β) to the wider sector −(2k − 1)π/4 + δ < argβ < (2k + 3)π/4 − δ, as stated in the
following

Theorem 2.1. The eigenvalues Ej(β) of H(β), Im β > 0, which exist for |β| suitably small,
admit a (many-valued) analytic continuation across the real axis to any sector

S(δ) = {
β : |β| < B(δ),−(2k − 1) 1

4π + δ < argβ < (2k + 3) 1
4π − δ

}
,∀δ > 0. (2.4)

In order to prove this theorem we need some preliminary results based on the standard method
of dilation analyticity (see, e.g., [20], vol IV, section XIII.10). More precisely we introduce
the operator

H(β, θ) ≡ e−2θp2 + e2θx2 + βe(2k+1)θ x(2k+1) ≡ e−2θK(β, θ) (2.5)

which, for θ ∈ R, is unitarily equivalent to H(β), Im β > 0, via the dilation operator U(θ)
defined by

(U(θ)u)(x) = eθ/2u(eθx) ∀u ∈ L2(R).

In [7] it was proved that, when defined onD(p2)∩D(x2k+1),H(β, θ) represents a holomorphic
family of type A of operators with compact resolvents for −(2k−1)π/8 < argβ < (2k+7)π/8,
Im θ = (π/2 − argβ)/(2k + 3). This was obtained by means of a quadratic estimate for the
operator p2 +e4θx2 +i|β|x2k+1 (which corresponds toK(β, θ) for argβ +(2k+3) Im θ = π/2),
valid for −π/2 < 4 Im θ < π/2. Now, a first step in the proof of theorem 2.1 consists in
proving an analogous quadratic estimate for the operator

K(β, θ) = p2 + e4θx2 + |β|ei argβ+(2k+3)θ x2k+1 (2.6)

under two more general conditions

0 < argβ + (2k + 3) Im θ < π

0 < argβ + (2k − 1) Im θ < π.
(2.7)

Remark 2.2. The first condition of (2.7) corresponds to requiring the positivity of the
imaginary part of the coefficient of x2k+1; as for the second one, if we denote α =
argβ + (2k + 3) Im θ the argument of the coefficient of x2k+1, it is equivalent to requiring
that the coefficient γ ≡ e4θ of x2 is in the half-plane −π + α < arg γ < α.

Lemma 2.3. Let α ∈ ]0, π [ and * ⊂ C be a compact subset of the half-plane −π + α <
arg γ < α. Then there exist a, b > 0 such that

‖p2u‖2 + |γ |2‖x2u‖2 + |β|2‖x2k+1u‖2 � a‖(p2 + γ x2 + |β|eiαx2k+1)u‖2 + b‖u‖2 (2.8)

∀u ∈ D(p2) ∩ D(x2k+1), γ ∈ *, 0 < |β| � 1, a and b independent of γ in * and α in a
closed interval contained in ]0, π [.
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Proof. We shall prove the following estimate, equivalent to (2.8):

‖p2u‖2 + |σ |2‖x2u‖2 + |β|2‖x2k+1u‖2 � a‖(e−iαp2 + σx2 + |β|x2k+1)u‖2 + b‖u‖2 (2.9)

∀u ∈ D(p2) ∩ D(x2k+1), with σ = γ e−iα varying in a compact subset of the half-plane
−π < arg σ < 0. As quadratic forms on D(p2) ∩D(x2k+1)⊗D(p2) ∩D(x2k+1) we have

(eiαp2 + σx2 + |β|x2k+1)(e−iαp2 + σx2 + |β|x2k+1)

= (eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) + |σ |2x4 + Re σ(eiαp2 + |β|x2k+1)x2

+i Im σ(eiαp2 + |β|x2k+1)x2 + Re σx2(e−iαp2 + |β|x2k+1)

−i Im σx2(e−iαp2 + |β|x2k+1)

=
∣∣∣∣Re σ

σ

∣∣∣∣ (eiαp2 + |β|x2k+1 ± |σ |x2)(e−iαp2 + |β|x2k+1 ± |σ |x2)

+

(
1 −

∣∣∣∣Re σ

σ

∣∣∣∣
) [
(eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) + |σ |2x4

]
+i Im σ(eiαp2x2 − e−iαx2p2)

�
(

1 −
∣∣∣∣Re σ

σ

∣∣∣∣
) [
(eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) + |σ |2x4

]
+i Im σ cosα[p2, x2] − Im σ sin α(p2x2 + x2p2)

=
(

1 −
∣∣∣∣Re σ

σ

∣∣∣∣
) [
(eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) + |σ |2x4

]
+2 Im σ cosα(px + xp)− Im σ sin α

(
[p, [p, x2]] + 2px2p

)
=

(
1 −

∣∣∣∣Re σ

σ

∣∣∣∣
) [
(eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) + |σ |2x4

]
−2 Im σ | cosα|(∓px ∓ xp)− Im σ sin α(−2 + 2px2p)

(since sin α > 0 and Im σ < 0)

�
(

1 −
∣∣∣∣Re σ

σ

∣∣∣∣
) [
(eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) + |σ |2x4

]
−2 Im σ | cosα| [(p ∓ x)2 − p2 − x2

]
+ 2 Im σ sin α

�
(

1 −
∣∣∣∣Re σ

σ

∣∣∣∣
) [
(eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) + |σ |2x4

]
+2 Im σ | cosα|(p2 + x2) + 2 Im σ sin α.

In [7] it was proved that there exist a1, b1 > 0, in general depending on |β|, such that

(eiαp2 + |β|x2k+1)(e−iαp2 + |β|x2k+1) � a1(p
4 + |β|2x4k+2)− b1.

Thus,

(eiαp2 + σx2 + |β|x2k+1)(e−iαp2 + σx2 + |β|x2k+1)

� A(p4 + |β|2x4k+2) + B|σ |2x4 + 2 Im σ | cosα|(p2 + x2) + 2 Im σ sin α − b1

� [Aa′p4 + 2 Im σ | cosα|p2 + 2 Im σ sin α − b + b′/2]

+[Aa′|β|2x4k+2 + 2 Im σ | cosα|x2 + b′/2]

+A(1 − a′)p4 + A(1 − a′)|β|2x4k+2 + B|σ |2x4 − b′.
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Now it suffices to choose 0 < a′ < 1 and b′ > 0 such that the two terms in square brackets
are positive. �

Lemma 2.4. Let β and θ be fixed, satisfying conditions (2.7) and let α = argβ + (2k+3) Im θ ,
α ∈ ]0, π [. Then there exists ξ > 0 such that

ξ Re
[
e−i(α−π/2) 〈u,K(β, θ)u〉] � 〈u, p2u〉 ∀u ∈ C∞

0 (R). (2.10)

Proof. We have

Re
[
e−i(α−π/2) 〈u, (p2 + e4θx2 + |β|e(2k+3)Re θ+iαx2k+1)u

〉]
= cos (α − π/2)〈u, p2u〉 + e4 Re θ cos (π/2 − α + 4 Im θ)〈u, x2u〉

+|β|e(2k+3)Re θ cos (π/2)〈u, x2k+1u〉
= sin α〈u, p2u〉 + e4 Re θ sin (α − 4 Im θ)〈u, x2u〉
� sin α〈u, p2u〉

since sin (argβ + (2k − 1) Im θ) > 0 by the second condition of (2.7). Moreover, since
0 < α < π , the lemma is proved with ξ = (sin α)−1. �

Theorem 2.5. Let s = argβ and t = Im θ . Then H(β, θ) is a holomorphic family of type A
of closed operators on D(H(β, θ) = D(p2) ∩D(x2k+1) with compact resolvents for β and θ
such that s and t vary in the parallelogram P of the (s, t)-plane defined by

P = {(s, t) ∈ R
2 : 0 < (2k − 1)t + s < π, 0 < (2k + 3)t + s < π}. (2.11)

Proof. Lemma 2.3 guarantees that H(β, θ) is closed on a domain independent of β and θ for
argβ = s and Im θ = t satisfying conditions (2.7):

0 < (2k + 3)t + s < π

0 < (2k − 1)t + s < π

which define the parallelogram P with vertices in the points of coordinates (−(2k −
1)π/4, π/4), (0, 0), ((2k + 3)π/4,−π/4), (π, 0). From lemma 2.4 it follows that, for β
and θ in this region, K(β, θ) has a numerical range in the half-plane −π + α � arg z � α,
with α = argβ + (2k + 3) Im θ ; thusH(β, θ) has a numerical range contained in the half-plane

/ = {z ∈ C : −π + argβ + (2k + 1) Im θ � arg z � argβ + (2k + 1) Im θ}.
By standard arguments on the holomorphic families of type A (see [19] or [20], vol IV),
taking into account the above-mentioned results obtained in [7] for −(2k − 1)π/8 < argβ <
(2k + 7)π/8, we now obtain the analyticity of H(β, θ) in the region defined by P , which
allows β to be extended to the sector −(2k − 1)π/4 < argβ < (2k + 3)π/4, as well as the
compactness of the resolvents. Finally, the (discrete) spectrum of H(β, θ) is contained in /
and ∀z /∈ /, ‖(z−H(β, θ))−1‖ � (dist(z,/))−1. �

Remark 2.6. Let us note that, if we start from the operator H(β) with Im β < 0, analogous
results can be obtained for the operator family H(β, θ) for β and θ such that s = argβ,
t = Im θ vary in the parallelogram

P 1 = {(s, t) ∈ R
2 : −π < (2k − 1)t + s < 0,−π < (2k + 3)t + s < 0}.

Furthermore, the adjoint operator H(β, θ))∗ of H(β, θ) is H(β, θ).
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In order to complete the proof of theorem 2.1 we need to extend to the wider sector S(δ) given
by (2.4) the result obtained in [7] for β ∈ S1(δ) (see (2.3)), on the existence of eigenvalues of
H(β, θ) and on their convergence to the corresponding eigenvalues of the harmonic oscillator
as |β| → 0. To this end, since we cannot make use of the norm resolvent convergence which
holds only for β ∈ S1(δ), |β| → 0, we will apply the more general criterion for the stability
of the eigenvalues introduced in [18] and based on the strong convergence of the resolvents.
More precisely, let us consider the operator

H(0, θ) ≡ e−2θp2 + e2θx2 D(H(0, θ)) = D(p2) ∩D(x2)

corresponding to the dilated harmonic oscillator. We will prove that the eigenvalues ofH(0, θ),
independent of θ for −π/4 < Im θ < π/4, and represented by the sequence of the odd
numbers {(2j + 1) : j ∈ N}, are stable in the sense of Kato with respect to the family
{H(β, θ) : |β| > 0}, β and θ in the region defined by P . For simplicity we will work with
the operators K(β, θ) = e2θH(β, θ) and K(0, θ) = e2θH(0, θ); moreover, from now on we
will assume θ to be purely imaginary, that is of the form iθ , −π/4 < θ < π/4, and (with a
slight abuse of notation) we will still denote by H(β, θ) and K(β, θ) the operators H(β, iθ)
and K(β, iθ), respectively. Note that with this convention we should read θ in place of Im θ
wherever the notation Im θ has been employed, in particular in the conditions (2.7). Finally,
let σ(K(β, θ)) denote the spectrum ofK(β, θ). Then, in order to obtain the above-mentioned
stability result, we will prove the following:

Theorem 2.7. Let β and θ satisfy conditions (2.7). We have

(a) if λ /∈ σ(K(0, θ)), then λ ∈ 1, where

1 = {z ∈ C : z /∈ σ(K(β, θ)) and (z−K(β, θ))−1 is uniformly bounded as |β| → 0};
(b) if λ ∈ σ(K(0, θ)) = {(2j + 1) e2iθ : j ∈ N}, then λ is stable with respect to the family

K(β, θ), i.e. if r > 0 is sufficiently small, so that the only eigenvalue of K(0, θ) enclosed
in �r = {z ∈ C : |z − λ| = r} is λ, then there is B > 0 such that for |β| < B,
dim P(β, θ) = dim P(0, θ), where

P(β, θ) = (2π i)−1
∮
�r

(z−K(β, θ))−1 dz

is the spectral projection of K(β, θ) corresponding to the part of the spectrum enclosed
in �r ⊂ C − σ(K(β, θ)). Similarly for P(0, θ).

Proof. It is a straightforward application of theorem 5.4 of [18] once we have proved the
following:

Theorem 2.8. Let argβ and θ be fixed, satisfying conditions (2.7), and let K(ρ) = K(β, θ)

with ρ = |β|. Then

(a) lim
ρ→0+

K(ρ)u = K(0)u, lim
ρ→0+

K(ρ)∗u = K(0)∗u,∀u ∈ C∞
0 (R).

(b) 1 �= ∅.
(c) Let χ ∈ C∞

0 (R) be such that χ(x) = 1 for |x| � 1, 0 � χ(x) � 1, ∀x ∈ R, χ(x) = 0 for
|x| � 2. For n ∈ N let χn(x) = χ(x/n) and Mn(x) = 1 − χn(x). We have

1. if ρm → 0+ and um ∈ D(K(ρm)) are two sequences such that

‖um‖ → 1 um
w→ 0 and ‖K(ρm)um‖ � (constant) ∀m

then there exists a > 0 such that

lim sup
m→∞

‖Mnum‖ � a > 0 ∀n
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2. for some z ∈ 1
lim
n→∞ ‖[Mn,K(ρ)](z−K(ρ))−1‖ = 0

uniformly as ρ → 0+;
3. ∀λ ∈ C, there exists δ > 0 such that

dn(λ, ρ) ≡ inf {‖(λ−K(ρ))Mnu‖ : u ∈ D(K(ρ)), ‖Mnu‖ = 1} > δ
∀n > n0 and ρ → 0+.

Proof.

(a) It follows immediately from the convergence of the potential V (ρ) = e4iθx2 +
ρei(argβ+(2k+3)θ)x2k+1 to V (0) = e4iθx2 as ρ → 0+, uniformly on the compact subsets
of R.

(b) As already observed in the proof of theorem 2.5K(ρ) has a numerical range contained in
the half-plane

/α = {z ∈ C : −π + α � arg z � α} α = argβ + (2k + 3)θ

independent of ρ, and ∀z /∈ /α , ‖(z−K(ρ))−1‖ � (dist(z,/α))
−1.

(c) Statement 1 follows from a standard argument based on an estimate which comes from
lemma 2.4: there exists c > 0 such that

‖(1 + p2)
1
2 u‖ � c(‖K(ρ)u‖ + ‖u‖) ∀u ∈ D(K(ρ)). (2.12)

For the details see [18]. As for statement 2, following again [18], we have

[Mn,K(ρ)] = [χn, p
2] = 2in−1;np − n−2<n

where the functions;n and<n, obtained by differentiating χ once and twice, respectively,
are uniformly bounded in n and ρ. Thus, the result follows by applying (2.12) again.
Finally, given λ ∈ C we have

dn(λ, ρ) = inf{‖(λ′ − ei(π/2−α)K(ρ))Mnu‖ : u ∈ D(K(ρ)), ‖Mnu‖ = 1}
with λ′ = ei(π/2−α)λ, α = argβ+(2k+3)θ . Therefore, dn(λ, ρ) � dist(λ′,Gn(ρ)), where

Gn(ρ) = {〈
Mnu, ei(π/2−α)K(ρ))Mnu

〉
: u ∈ D(K(ρ)), ‖Mnu‖ = 1

}
whence

dn(λ, ρ) � inf
{
Re

〈
Mnu, ei(π/2−α)K(ρ))Mnu

〉 − |λ′| : u ∈ D(K(ρ)), ‖Mnu‖ = 1
}
.

Now the assertion follows from the proof of lemma 2.4, which yields

Re
〈
Mnu, ei(π/2−α)K(ρ))Mnu

〉
� sin (argβ + (2k − 1)θ)〈Mnu, x

2Mnu〉 � n2 sin (argβ + (2k − 1)θ)

and therefore

lim
n→∞
ρ→0+

dn(λ, ρ) = +∞. �
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Remark 2.9. It can be immediately checked that all the results so far obtained, in particular the
analyticity of the familyH(β, θ) and the stability of the eigenvalues of the harmonic oscillator
with respect toH(β, θ) as ρ = |β| → 0+, hold uniformly in β and θ such that (argβ, θ) varies
in any compact subset of P .

Proof of theorem 2.1. It follows from theorems 2.5 and 2.7 and from remark 2.9. In particular,
if (argβ, θ) ∈ P , by the well known Symanzik scaling properties (see [21]) the eigenvalues
Ej(β) of H(β, θ) do not depend on θ and represent the analytic continuation to the sector
S(δ) of the eigenvalues of H(β), Im β > 0; in fact, as already observed, the condition
(argβ, θ) ∈ P , allows us to extend argβ to the interval ]−(2k − 1)π/4, (2k + 3)π/4[. �

Remark 2.10. Let Ej(β) denote the generic eigenvalue of H(β) for Im β > 0, which can
be analytically continued to the sector S(δ), and E1

j (β) the generic eigenvalue of H(β) for
Im β < 0, which can be analytically continued to the sector

S(δ) = {
β : 0 < |β| < B(δ),−(2k + 3) 1

4π + δ < argβ < (2k − 1) 1
4π − δ

}
.

Then, from remark 2.6 we have E1
j (β) = Ej(β).

3. Analyticity of the eigenvalues in a Nevanlinna disc and distributional Borel
summability

We begin this section by stating and proving the basic analyticity result needed to establish the
distributional Borel summability (see the appendix).

Theorem 3.1. Set q = (2k−1)/2. For each eigenvalueEj(β), j ∈ N, of the odd anharmonic
oscillator H(β) there exists R > 0 such that Ej(β) is analytic in the Nevanlinna disc
CR = {β : Re β−1/q > R−1} of the β1/q-plane.

Remark 3.2.

(I) The sector S(δ) can be rewritten in terms of the parameter q:

S(δ) =
{
β : |β| < B(δ),−π

2
+
δ

q
< argβ1/q <

π

2
+
π

q
− δ

q

}
.

(II) The functionEj(β), analytic in any sector S(δ) and for which we want to prove analyticity
in a disc CR , represents an eigenvalue of the operator H(β, θ) if the pair (β, θ) satisfies
the condition (argβ, θ) ∈ P . In particular, for −π(2k−1)/4 < argβ < 0 we can choose
the path inside P given by the straight line of equation

θ = − 1

2k + 1
argβ +

π

2(2k + 1)

then, if we set

argβ = − 1
4π(2k − 1) + 1

2ε(2k − 1) = − 1
2πq + εq

i.e.

argβ1/q = − 1
2π + ε ε → 0+

we obtain θ = π/4 − (2k − 1)ε/[2(2k + 1)] = π/4 − εq/(2k + 1), and the operator
H(β, θ) takes the form

A(ρ) = e−i(π/2−(2k−1)ε/(2k+1))p2 + ei(π/2−(2k−1)ε/(2k+1))x2 + iρx2k+1 with ρ = |β|.
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(III) For β = ρei argβ and argβ = (− 1
2π + ε)q, the boundary of CR has the equation

sin ε = ρ1/q

R
. (3.1)

Since the discCR can be regarded as the union of the boundaries of discs of smaller radius,
the proof of theorem 3.1 reduces to a stability argument with respect to the familyA(ρ), as
ρ → 0+, under condition (3.1), for the eigenvalues of a suitable limiting operator, which
we proceed to define.

The argument is similar to that already developed in [9, 10] to obtain analyticity of the
eigenvalues for the operators associated with the Stark effect and the double-well oscillators,
respectively. More precisely, let D denote the dense subset of L2(R) of the functions which
are translation analytic in a suitable strip | Im x| < η0, for some 0 < η0 < 1 (recall that
u ∈ L2(R) is translation analytic for | Im x| < r if (Tau)(x) = u(x + a) admits an L2-valued
analytic continuation to | Im a| < r); D represents a core for A(ρ).

Definition 3.3. Let η > 0 be fixed and small. For fixed ak > 0, set x0 = −ak/ρ1/(2k−1) and
let U denote the unitary operator in L2(R) defined by

(Uψ)(x) = (ξ ′
ρ(x))

1/2ψ(ξρ(x)) ∀ψ ∈ D
where, for any given ρ > 0, ξρ ∈ C∞(R) satisfies the conditions

ξρ(x) = x − iη arctan
[
x/(1 + x2)1/4

] −x0 � x < +∞
ξρ(x) = x x � x0 − η

(3.2)

and Im ξρ(x) is monotonic in the remaining region.
Then the closed operator Hρ ≡ UA(ρ)U−1, unitarily equivalent to A(ρ) and with the

same (discrete) spectrum, has D1 ≡ U(D) as a core, and its action on D1 is given by

Hρu = exp

[
−i

(
π

2
− 2k − 1

2k + 1
ε

)] {
pf 2

ρ p + 4−1(f 2
ρ )

′′} u
+ exp

[
i

(
π

2
− 2k − 1

2k + 1
ε

)]
ξ 2
ρu + iρξ 2k+1

ρ u ∀u ∈ D1 (3.3)

where fρ(x) = (ξ ′
ρ(x))

−1, ∀x ∈ R.

Remark 3.4. In a similar way we can define the dilated harmonic oscillator, having D1 as a
core:

H0u = −i
{
pf 2

0 p + 4−1(f 2
0 )

′′} u + iξ 2
0u ∀u ∈ D1

where f0(x) = (ξ ′
0(x))

−1 and ξ ′
0(x) = x − iη arctan

[
x/(1 + x2)1/4

]
, ∀ ∈ R. In corollary 3.9

we will prove that H0 is the limit in the strong resolvent sense of Hρ as ρ → 0+. Therefore,
as anticipated after remark 3.2, the proof of theorem 3.1 consists in obtaining a stability result
for the eigenvalues Ej = (2j + 1), j ∈ N, of H0, which coincide with those of the harmonic
oscillator, with respect to the family Hρ as ρ → 0+.

Proceeding in analogy with [9, 10], this result will be obtained by proving some preliminary
lemmas aimed at verifying the hypotheses of theorem A.1 of [10]. This theorem represents
a simpler tool for applications, in the context of the more general stability theory developed
by Hunziker and Vock in [18]. In particular, in the subsequent lemmas 3.5, 3.6, 3.9, 3.10
and corollaries 3.7 and 3.8, we follow the corresponding steps used in [9, 10] to obtain similar
results, each one adapted to the specific characteristics of the present problem; we will describe
here the relevant details.
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Lemma 3.5. Let Vρ(x) = exp
[
i
(
π
2 − 2k−1

2k+1 ε
)]
ξ 2
ρ (x) + iρξ 2k+1

ρ (x). Then for a suitable choice
of the constant ak > 0 in definition 3.3 there exist constants c1 > 0 and c2 ∈ R such that

ReVρ(x) � c1

R
+ c2 ∀x /∈ (−n, n) (3.4)

∀n � n0, 0 < ρ < ρ0.

Proof. Set η(x) = Im ξρ(x); then η(x) � 0 for x > 0, η(x) � 0 for x � 0, and
−ηπ/2 � η(x) � ηπ/2, ∀x ∈ R. Now a simple calculation gives

ReVρ(x) = sin {ε(2k − 1)/(2k + 1)} (
x2 − η(x)2

) − cos {ε(2k − 1)/(2k + 1)} (2xη(x))

−ρη(x)
[
(2k + 1)x2k −

(
2k + 1

3

)
x2k−2η(x)2 +

(
2k + 1

5

)
x2k−4η(x)4

+ · · · + (−1)k−1

(
2k + 1
2k − 1

)
x2η(x)2k−2 + (−1)kη(x)2k

]
. (3.5)

Next we note that the term inside the square brackets can be bounded from below by a constant
(independent of ρ), and for x � n � n0, 0 < ρ < ρ0 we have x2 > η(x)2, whence

ReVρ(x) � cn + c′ � c1

R
+ c2. (3.6)

For x � −n we still have x2 > η(x)2, and the term inside the square brackets in (3.5) can be
bounded from above by

Ax2k + B

for suitable constants A > 0 and B ∈ R, independent of ρ and n. Thus,

ReVρ(x) � sin [ε(2k − 1)/(2k + 1)]
(
x2 − η(x)2

) − cos [ε(2k − 1)/(2k + 1)] (2xη(x))

−ρη(x)(Ax2k + B). (3.7)

Now, if the number ak > 0 in definition 3.3 is chosen so that the polynomial term

−2x cos [ε(2k − 1)/(2k + 1)] − ρ(Ax2k + B) (3.8)

attains its (positive) maximum at x0 = −ak/ρ1/(2k−1), estimate (3.6) still holds in the interval
x0 � x � −n, if we make the assumption, not restrictive in this context, that n � ρ−2k .
Finally, note that at some point smaller than x0 the term (3.8) becomes negative and tends to
−∞ as ρ → 0+, without being compensated by the term

sin [ε(2k − 1)/(2k + 1)]
(
x2 − η(x)2

)
which behaves as ρ1/q

R
x2, if we recall that sin ε = ρ1/q

R
. This is the reason why it was necessary

to set η(x) = 0 for x � x0 − η. In particular, in this region we have

ReVρ(x) = (sin [ε(2k − 1)/(2k + 1)]) x2 � c

(
ρ1/q

R

) (
− ak

ρ1/(2k−1)
− η

)2

� c1

R
+ c2

whence the assertion. �

From now on the constant ak > 0 in definition 3.3 will be chosen so as to satisfy lemma 3.5.
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Lemma 3.6. There exist constants c3,c4 > 0 such that

Re 〈u,Hρu〉 � c3

∫ +∞

x0

(1 + x2)1/4

x2 + (1 + x2)1/2
|pu|2 dx − c4‖u‖2 (3.9)

∀u ∈ D(Hρ), 0 < ρ < ρ0.

Proof. Set ω = exp
[−i

(
π
2 − 2k−1

2k+1 ε
)]

. Then we have

Re 〈u,Hρu〉 = Re
∫ +∞

−∞

{
ωf 2

ρ |pu|2 + 1
4ω(f

2
ρ )

′′|u|2 + Vρ(x)|u|2
}

dx. (3.10)

As for the first term in the right-hand side of (3.10) we have

Re (ωf 2
ρ ) = sin [ε(2k − 1)/(2k + 1)] Re f 2

ρ + cos [ε(2k − 1)/(2k + 1)] Im f 2
ρ . (3.11)

For x � x0 it is easy to check that

Re f 2
ρ � 1

4

(
1 − η2 (1 + x2)1/2

[x2 + (1 + x2)1/2]2

)
(3.12)

and

Im f 2
ρ � η

[
(1 + x2)1/4

x2 + (1 + x2)1/2

]
(3.13)

whence

Re (ωf 2
ρ ) � η

(
cos [ε(2k − 1)/(2k + 1)]

(1 + x2)1/4

x2 + (1 + x2)1/2

)
. (3.14)

In the region x � x0 − η we have fρ(x) = 1, so that

Re (ωf 2
ρ ) = sin [ε(2k − 1)/(2k + 1)]. (3.15)

Now simple calculations allow us to verify that |(f 2
ρ )

′′| is bounded. Moreover, from (3.5) it
follows that ReVρ(x) is bounded from below in the interval (−n0, n0), and therefore in R by
lemma 3.5. Now the assertion follows by combining this result with (3.14) and (3.15). �

Corollary 3.7.

(a) lim
ρ→0+

Hρu = H0u,∀u ∈ D1.

(b) 1′ �= ∅, where

1′ = {z ∈ C : z /∈ σ(Hρ) and (z−Hρ)
−1 is uniformly bounded as ρ → 0+}.

(c) Hρ converges strongly to H0 in the generalized sense.

Proof. Statement (a) follows from the fact that ξρ(x) → ξ0(x) as ρ → 0+, uniformly on
compacts. By lemma 3.6 we have that the numerical range of Hρ is contained in a right half-
plane/, and sinceHρ has discrete spectrum, ‖(z−Hρ)−1‖ � (dist(z,/))−1, ∀z /∈ /. Finally,
(c) follows from (a) and (b), since D1 is a core for Hρ , ρ � 0 (see [19], theorem VIII.1.5).

�
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Corollary 3.8. Let χ ∈ C∞
0 (R) be the function defined in theorem 2.8(c), and again let

χn(x) = χ(x/n), Mn(x) = 1 − χn(x), ∀n ∈ N. Then there exists c5 > 0 such that

‖[Hρ, χn]u‖ � c5

n1/4
(‖Hρu‖ + ‖u‖) (3.16)

∀u ∈ D(Hρ), 0 � ρ < ρ0.

Proof. Let u ∈ D(Hρ), ‖u‖ = 1, and γ2n be the characteristic function of the interval
[−2n, 2n]. We have

[Hρ, χn] = ω[pf 2
ρ p, χn] = ωγ2n{2in−1f 2

ρ χ
′(x/n)p + 2n−1fρf

′
ρχ

′(x/n) + n−2f 2
ρ χ

′′(x/n)}.
(3.17)

Now, since χ ′, χ ′′, fρ , f ′
ρ , f 2

ρ are all bounded functions, we have the pointwise estimate

|[Hρ, χn]u(x)| � c

n
(|u(x)| + |(pu)(x)|). (3.18)

Thus, for ‖u‖ = 1,

‖[Hρ, χn]u‖ � c′

n

{(∫ 2n

−2n
|pu|2 (1 + x2)1/4

x2 + (1 + x2)1/2

x2 + (1 + x2)1/2

(1 + x2)1/4
dx

)1/2

+ 1

}

� c′′

n

{
n3/4

(∫ +∞

x0

|pu|2 (1 + x2)1/4

x2 + (1 + x2)1/2
dx

)1/2

+ 1

}

� c5

n1/4

{
Re 〈u,Hρu〉 + 1

}
whence the assertion. Note that to obtain the second inequality we assumed again, without
loss, n � |x0|, while for the last inequality we have used lemma 3.6. �

Lemma 3.9. Let the sequences ρm → 0+ and um ∈ D(Hρm) be given such that ‖Hρmum‖ is

bounded, ‖um‖ = 1, um
w−→ 0. Then ∀n

lim
m→∞ ‖χnum‖ = 0.

Proof. Set H ′
ρ = ω−1Hρ and let λ ∈ C − σ(H ′

0) be fixed. Then we have

‖χnum‖2 � c
(‖χnR′

0(H
′
0 −H ′

ρm
)um‖2 + ‖χnR′

0(H
′
ρm

− λ)um‖2
)

where R′
0 = (λ−H ′

0)
−1. Now we can proceed as in the proof of lemma 5 of [9]. �

Lemma 3.10. For any λ ∈ C there exist R, n0, δ > 0 such that

dn,ρ(λ) ≡ inf {‖(λ−Hρ)Mnu‖ : u ∈ D(Hρ), ‖Mnu‖ = 1} � δ

∀n > n0, ∀ρ � ρ0.

Proof. By lemma 3.5

Re 〈Mnu, VρmMnu〉 � c1

R
+ c2 > δ > 0

if ‖Mnu‖ = 1 and R is chosen sufficiently small. Finally, from the proof of lemma 3.6 the
kinetic part of Hρ is bounded from below and this proves the lemma. �

Proof of theorem 3.1. From corollary 3.8 and lemmas 3.9 and 3.10, the proof of a theorem
analogous to theorem 2.8 immediately follows, with the operatorK(ρ) replaced byHρ , ρ � 0.
Thus, we can apply theorem A1 of [10], in order to obtain the following stability result:
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(a) if λ /∈ σ(H0) then (λ−Hρ)
−1 is uniformly bounded as ρ → 0+;

(b) if λ ∈ σ(H0) then λ is a stable eigenvalue with respect to the family {Hρ}ρ>0. �

With an argument analogous to that used to prove theorem 3.1 we now obtain the following.

Theorem 3.11. Let q = (2k − 1)/2. Then for each eigenvalue Ej(β), j ∈ N, of H(β),
Im β > 0, there exists R′ > 0 such that Ej(β) is analytic in the Nevanlinna disc

DR′ =
{
β : |β1/q − (R′/2) eiπ/q | < R′/2,−π

2
+
π

q
< argβ1/q <

π

2
+
π

q

}

with radius R′/2 and centre at C = (R′/2) eiπ/q , contained in the half-plane − 1
2π + π

q
<

argβ1/q < 1
2π + π

q
of the Riemann surface of the variable β1/q .

Remark 3.12. Set β ′ = βe−iπ ; then, by theorem 3.11, Ej(β) is analytic in the Nevanlinna
disc

CR′ = {
β : Re (β ′)−1/q > (R′)−1

}
of the (β ′)1/q-plane.

Theorem 3.13. For any j ∈ N, the eigenvalue Ej(β) of H(β) is Borel summable in the
ordinary sense for 0 < argβ < π and in the distributional sense for argβ = 0 and argβ = π .

Proof. We will examine only the ‘singular’ cases argβ = 0, π ; the others can be treated
in the standard way (see also [7] for π/8 < argβ < 7π/8). Let us consider first the case
argβ = 0. Then theorem 3.1 allows us to apply the criterion for the distributional Borel–
Leroy sum of order q given in [8] and recalled in the appendix for q = 1. More precisely, the
criterion requires the analyticity of Ej(β) in a disc CR = {β : Re β−1/q > R−1}, as obtained
in theorem 3.1, and the well known estimates for the remainders∣∣∣∣∣Ej(β)−

N−1∑
s=0

asβ
s

∣∣∣∣∣ � AσN�(qN + 1)|β|N ∀N = 1, 2, . . . (3.19)

uniformly in CR,ε = {β ∈ CR : argβ1/q � −π/2 + ε}, ∀ε > 0, where the constants A
and σ may depend on ε, and

∑∞
s=0 asβ

s is the Rayleigh–Schrödinger perturbation expansion
corresponding to Ej(β) (see [20], vol IV, for the standard proof of such estimates). As for the
case argβ = π , we first note that (3.19) is known to hold uniformly in β in any sector

S(δ) =
{
β : |β| < B(δ),−π

2
+
δ

q
< argβ1/q <

π

2
+
π

q
− δ

q

}
.

Next observe that the direction argβ = π in theβ-plane corresponds to the direction argβ ′ = 0
in the β ′-plane, β ′ = βe−iπ . Now, in analogy with [8] (theorems 3 and 4), the criterion for the
distributional Borel–Leroy summability of order q of Ej(β) in the direction argβ = π can
be stated in terms of the ‘adapted’ variable β ′, in the sense that it relies on the following two
conditions:

(a) Ej(β) is analytic in

CR′ = {
β : Re (β ′)−1/q > (R′)−1

};
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(b) ∀ε > 0, there exist A, σ > 0 such that∣∣∣∣∣Fj (β ′)−
N−1∑
s=0

(−1)sas(β
′)s

∣∣∣∣∣ � AσN�(qN + 1)|β ′|N ∀N = 1, 2, . . . (3.20)

uniformly in CR′,ε = {β ∈ CR′ : arg(β ′)1/q � −π/2 + ε}, where

Fj (β
′) ≡ Ej

(
β ′e−iπ

) = Ej(β).

Now, (a) is given in remark 3.12 and (b) follows from the fact that the sector S(δ), where (3.19)
holds uniformly, can be rewritten in terms of (β ′)1/q as

S(δ) =
{
β : |β ′| < B(δ),−π

2
− π

q
+
δ

q
< arg (β ′)1/q <

π

2
− δ

q

}
.

Indeed, since the coefficients as of the power series are such that as = 0 if s is odd,
equation (3.19) is equivalent to∣∣∣∣∣Fj (β ′)−

N−1∑
s=0

(−1)sas(β
′)s

∣∣∣∣∣ � AσN�(qN + 1)|β ′|N ∀N = 1, 2, . . . (3.21)

uniformly in CR′,ε = {β ∈ CR′ : arg(β ′)1/q � π/2 − ε}, where Fj (β ′) = Ej(β). Finally, this
is equivalent to (b) since the coefficients as are real. �

Proof of theorem 1.3. According to the terminology introduced in [8] (see the appendix)
about the distributional Borel summability, by (3.19) Ej(β) represents the so-called ‘upper

sum’ and Ej(β) the ‘lower sum’ for β ∈ CR; conversely, by (3.20), Ej(β) is the lower sum

and Ej(β) the upper sum for β ∈ CR′ . More precisely, Ej(β) admits for β ∈ CR the integral
representation

Ej(β) = 1

qβ

∫ ∞

0
Bj(t + i0) e−(t/β)1/q

(
t

β

)−1+1/q

dt (3.22)

and the analogous representation holds for Ej(β) with B(t + i0) in place of B(t + i0). For
β ∈ CR′ the representation analogous to (3.22) holds in terms of the adapted variable β ′, i.e.

Ej(β) = Fj (β
′) = 1

qβ ′

∫ ∞

0
Bj(t + i0) e−(t/β ′)1/q

(
t

β ′

)−1+1/q

dt (3.23)

because the odd terms in the power series are identically zero. The distributional Borel sum,
which must be real for β ∈ R since the Rayleigh–Schrödinger perturbation series

∑∞
s=0 asβ

s

has real coefficients, is given by

fj (β) = 1
2

(
Ej(β) + Ej(β)

)
(3.24)

while, as anticipated in the introduction, the difference

dj (β) ≡ 2igj (β) =

Ej(β)− Ej(β) β ∈ CR
Ej(β)− Ej(β) β ∈ CR′

(3.25)

represents the so-called ‘discontinuity’, which has zero asymptotic expansion. Now, if β ∈ R,
by (3.22) and (3.23) we have

Ej(−β) = Ej(β).

It follows that fj (β) = fj (−β) and gj (−β) = −gj (β), i.e.Ej(β) andEj(−β) have the same
real part and opposite imaginary one. This concludes the proof of the theorem. �
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Remark 3.14.

(a) For β ∈ R, it follows from (3.24) and (3.25) that

fj (β) = ReEj(β) dj (±|β|) = ±2i ImEj(±|β|). (3.26)

Since Ej(β) can be interpreted as a resonance of the problem [11], fj (β) represents the
position of the resonance and |dj (β)|/2 its width. As in the Stark effect, the distributional
Borel summability completely determines the resonance.

(b) In the present case fj (β) and dj (β) admit a further interpretation, since by remark 2.10,

Ej(β) = E1
j (β), where E1

j (β) represents the j th eigenvalue of H(β) for Im β < 0. As
proved for Ej(β), E1

j (β) can be analytically continued to Nevanlinna discs analogous to
CR and CR′ across the positive and negative real axis, respectively. Thus,

fj (β) = 1
2 (Ej (β) + E1

j (β)) and dj (β) = ±[Ej(β)− E1
j (β)]

where the + holds for β ∈ CR , and the − for β ∈ CR′ .
(c) As already recalled, the eigenvalues admit the classical Borel integral representation for

π/8 + η < argβ < 7π/8 − η, η > 0 [7]. Formulae (3.22) and (3.23) yield their explicit
analytic continuation to the regions CR and CR′ across the real axis.

4. Summary

To assess the relevance of the distributional Borel summability proved in this paper, let us first
recall the physical intuition behind the odd anharmonic oscillators and summarize the known
mathematical results.

The introduction of the odd perturbation changes the shape of the harmonic potential
creating a finite barrier and thus destroying the confining nature of the unperturbed potential.
Hence the phenomenon of shape resonances should occur: all unperturbed bound states
should tunnel into resonances. However, this picture meets serious mathematical difficulties,
peculiar to the odd nature of the perturbing potential. First, the differential operator
H(β) = p2 + x2 + βx2k+1, β ∈ R, D(H(β)) = D(p2) ∩ D(x2k+1) is not closed and not
essentially self-adjoint. Hence the spectrum of its closure is the whole of C. This reflects
the incompleteness of the classical motions: any initial condition not inside the well reaches
infinity in a finite time. H(β) admits infinitely many self-adjoint extensions, each one with
a pure-point spectrum (see, e.g., [20], vol II). There is, however, no physical reason to single
out a particular extension over any other one. Actually, the physics of the problem has nothing
to do with them; neither does perturbation theory, which also in this case yields divergent
expansions. The purpose of the papers [7, 11] has been to overcome these difficulties and to
put the above physical intuition into the appropriate mathematical framework developed for
describing resonances and summing divergent perturbation expansions.

More precisely, first the operator H(β) is analysed for Im β �= 0. The results are:

(a) If β ∈ C, Im β > 0 (analogous results for Im β < 0) the operator family H(β)
defined on the maximal domain D(p2) ∩D(x2k+1) is closed and has compact resolvents.
∀j = 0, 1, . . . , H(β) has exactly one eigenvalue Ej(β) near the unperturbed eigenvalue
2j + 1 of H(0) for |β| suitably small.

(b) The function Ej(β) is holomorphic for Im β > 0, and admits a (many-valued) analytic
continuation across the real axis to the (Riemann surface) sector

S1(δ) = {β : |β| < B(δ),−(2k − 1)π/8 + δ < argβ < (2k + 7)π/8 − δ} ∀δ > 0.
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(c) The Rayleigh–Schrödinger perturbation expansion
∑∞

s=0 asβ
s near 2j + 1 exists, has

the property a2l+1 = 0, ∀l ∈ N, and is Borel (more precisely, Borel–Leroy of order
q ≡ (2k − 1)/2) summable to Ej(β) for π/8 + η < argβ < 7π/8 − η, η > 0. This
implies that if Re β = 0 and |β| is small Ej(β) is real.

The interpretation ofEj(β), β ∈ R as a (limit) resonance (ReEj(β) location, ImEj(β)width)
is achieved in [11]. A suitable cut-off parametrized by � > 0 is introduced to the effect of
approximating the polynomial potential by a dilation analytic potential V�,β(x) preserving
the well but tending to ±�β for x → ±∞. The operator p2 + V�,β(x) has an absolutely
continuous spectrum, and admits resonances in the standard sense of dilation analyticity. Each
function Ej(β), β ∈ R is a limit of such resonances for � → +∞.

The present paper solves the problem of relating directly in a unique way the real, divergent
perturbation expansion near 2j + 1 to the complex resonances Ej(β), β ∈ R. It is proved
above that Ej(β) and the perturbation expansion are on a one-to-one relationship through the
distributional Borel summability [8], the technique introduced for dealing specifically with
this kind of problems. Hence the real perturbation expansion determines both the location
ReEj(β) of the resonance and its width ImEj(β). As in the case of the Stark effect, the
location of the resonance is given by the perturbation expansion itself, and the width is still
determined (to leading exponential order) by the series through the divergent behaviour of its
coefficients.
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Appendix

To make this paper as self-contained as possible, we recall here the criterion for distributional
Borel–Leroy summability proved in [8], limiting ourselves to the case q = 1, corresponding
to the generalization of the classical Nevanlinna–Watson criterion.

Theorem A.1. Let f (β) be bounded and analytic in the Nevanlinna discCR = {β : Re β−1 >

R−1} and let f (β) = (φ(β)− φ(β))/2, with φ(β) analytic in CR and such that∣∣∣∣∣φ(β)−
N−1∑
s=0

asβ
s

∣∣∣∣∣ � Aσ(ε)NN !|β|N ∀N = 1, 2, . . . (A.1)

uniformly in CR,ε = {β ∈ CR : argβ � −π/2 + ε}, ∀ε > 0. Then the series
∑∞

s=0(as/s!)u
s

is convergent for small |u| and it admits an analytic continuation B(u) = B1(u) + B2(u),
where B1(u) is analytic in C1

d = {u : dist(u,R+) < d−1}, and B2(u) is analytic in
C2
d = {u : (Im u > 0,Re u > −d−1) or |u| < d−1} for some d > 0. B(u) satisfies

|B(t + iη0)| � A′(η0)
−1et/R (A.2)

uniformly for t > 0, for any η0 such that 0 < η0 < d−1. Moreover, setting PP(B(t)) =
(B(t + i0) + B(t + i0))/2, f (β) admits the integral representation

f (β) = β−1
∫ ∞

0
PP(B(t)) e−t/β dt β ∈ CR (A.3)

i.e. f (β) is the distributional Borel sum of
∑∞

s=0 asβ
s for 0 < β < R in the sense of

definition 1.1.
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Conversely, if B(u) = ∑∞
s=0(as/s!)u

s is convergent for |u| < d−1 and admits the
decomposition B(u) = B1(u) + B2(u) with the above quoted properties, then the function
defined by (A.3) is real-analytic in CR and φ(β) = β−1

∫ ∞
0 B(t + i0) e−t/β dt is analytic and

satisfies (A.1) in CR .

Remark A.2. The function φ(β) = β−1
∫ ∞

0 B(t + i0) e−t/β dt is called ‘the upper sum’ and

φ(β) = β−1
∫ ∞

0 B(t + i0) e−t/β dt ‘the lower sum’ of the series. It follows that, for β > 0,
f (β) = Re φ(β). On the other hand, with this method we can single out a unique function
with zero asymptotic power-series expansion, that is the ‘discontinuity’

d(β) = β−1
∫ ∞

0
(B(t + i0)− B(t + i0)) e−t/β dt = φ(β)− φ(β).

Thus, d(β) = 2i Im φ(β), for β > 0.
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